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Geometric Approach to The FDI Problem for Linear
Systems

Σ :

{
ẋ = Ax + Lf

y = Cx
, x ∈ Rn, f ∈ Rq, y ∈ Rp. Denoted by (A, L,C ).

The ith fault occurs if fi 6= 0 (i.e., not identically equal to 0).

Ω : ˙̂x = (A + GC )x̂ − Gy , G ∈ Rn×p,
such that {CVi}qi=1 are independent, i.e., CVi 6= {0} and
CVi ∩ CVj = {0} ∀i 6= j , where Vi is the smallest
(A + GC )−invariant subspace containing im Li .

Σ Ω
f y C x̂ r

−
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Geometric Approach to The FDI Problem for Linear
Systems

r := Cx̂ − y , e := x̂ − x

{
ė = (A + GC )e − Lf ,

r = Ce.

In this work, we do not require e(t)→ 0, and assume e(0) = 0.

e(t) ∈ V1 + V2 + . . .+ Vq and r(t) ∈ CV1 + CV2 + . . .+ CVq.
Since {CVi}qi=1 are independent, r(t) can be written uniquely as
r(t) = r1(t) + r2(t) + · · ·+ rq(t) with ri (t) ∈ CVi for all t.

Indeed, ri 6= 0 only if fi 6= 0, i.e., ri 6= 0 implies that the ith fault
occurs.

The FDI problem is solvable for (A, L,C ) if ∃G such that {CVi}qi=1

are independent.
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The FDI Problem for Linear Structured Systems

The FDI problem is solvable for (A, L,C ) if {CS∗i }
q
i=1 independent,

where S∗i is the smallest (C ,A)−invariant subspace containing im Li .
1

In many scenarios, the exact values of entries in A, L and C are not
known, but some patterns of A, L and C are known exactly.

For example:

A =


c1 0 0 0 0
c2 λ1 0 λ2 0
0 c3 c4 λ3 0
c5 0 0 λ4 c6

0 0 c7 0 c8

, L =


c9 0
λ5 c10

0 0
0 0
0 0

, C =

0 0 0 c11 0
0 0 0 λ6 λ7

0 0 0 c12 c13

 ,

where c1, c2, . . . , c13 are nonzero real numbers, and λ1, λ2, . . . , λ7 are
arbitrary real numbers.

1M. -A. Massoumnia (1986), ‘A Geometric Approach to The Synthesis of Failure
Detection Filters.’
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Pattern Matrices and Pattern Classes

Given a pattern matrix M∈ {0, ∗, ?}p×q, we define the pattern class
of M as 2

P(M) := {M ∈ Rp×q |Mij = 0 if Mij = 0,

Mij 6= 0 if Mij = ∗.}

M =

∗ 0 ∗
0 0 ∗
? ∗ ∗


M∈ {0, ∗, ?}3×3

1 0 2
0 0 2
1 1 3

 ∈ P(M)

1 1 2
0 0 2
1 1 3

 /∈ P(M)

2J. Jia, H. J. van Waarde, H. L. Trentelman, M. K. Camlibel (2020), ‘A Unifying
Framework for Strong Structural Controllability’.
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The FDI Problem for (A,L, C)

Let A ∈ {0, ∗, ?}n×n, L ∈ {0, ∗, ?}n×q and C ∈ {0, ∗, ?}p×n. We call the
family of systems of the form

ẋ = Ax + Lf

y = Cx ,
(1)

where A ∈ P(A), L ∈ P(L) and C ∈ P(C), the linear structured system
associated with A, L and C, represented by (A,L, C).

We say (A, L,C ) ∈ (A,L, C) if A ∈ P(A), L ∈ P(L) and C ∈ P(C).

Research directions of the FDI problem for (A,L, C):
1 The FDI problem is solvable for at least one member of a given

structured system.3

2 The FDI problem is solvable for all members of a given structured
system.4
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Problem Formulation
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Problem Formulation

Define the FDI problem for (A,L, C) to be solvable if the FDI
problem is solvable for every (A, L,C ) ∈ (A,L, C).

For general A ∈ {0, ∗, ?}n×n, L ∈ {0, ∗, ?}n×q and C ∈ {0, ∗, ?}p×n,
the conditions for solvability of the FDI problem for (A,L, C) are still
absent.

Problem: Given (A,L, C), find conditions under which the FDI
problem for (A,L, C) is solvable.
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Conditions for Solvability of The FDI Problem for (A, L,C )
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A Necessary and Sufficient Condition for Solvability of The
FDI Problem for (A, L,C )

Let di be a positive integer such that

CAjLi = 0 for j = 0, 1, . . . , di − 2 and CAdi−1Li 6= 0.

If this di exists, we then call it the index of (A, Li ,C ).

Theorem 1

Consider the system (A, L,C ) of the form (1). The FDI problem for
(A, L,C ) is solvable if and only if the index di exists for i = 1, 2, . . . , q,
and the matrix R has full column rank, where R is defined by

R :=
[
CAd1−1L1 CAd2−1L2 · · · CAdq−1Lq

]
. (2)
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Operations of Pattern Matrices

Table: Addition and multiplication within the set {0, ∗, ?}. 5

+ 0 ∗ ?

0 0 ∗ ?
∗ ∗ ? ?
? ? ? ?

· 0 ∗ ?

0 0 0 0
∗ 0 ∗ ?
? 0 ? ?

Let M∈ {0, ∗, ?}r×s and N ∈ {0, ∗, ?}s×t . Define MN ∈ {0, ∗, ?}r×t by

(MN )ij :=

q∑
k=1

(Mik ·Nkj) i = 1, 2, . . . , r , j = 1, 2, . . . , t.

If r = s, we call M a square pattern matrix. Define the kth power Mk

recursively by M0 = I, Mi =Mi−1M, i = 1, 2, . . . , k.

5B. Shali (2019), ‘Strong Structural Properties of Structured Linear Systems.’
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Algebraic Conditions for Solvability of The FDI Problem
for (A,L, C)

Let ηi be a positive integer such that CAjLi = O for j = 0, 1, . . . , ηi − 2
and CAηi−1Li 6= O. If ηi exists, then we call it the index of (A,Li , C).
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Algebraic Conditions for Solvability of The FDI Problem
for (A,L, C)

The relationship between the index of (A,Li , C) and that of (A, Li ,C ) ∈
(A,Li , C).
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Algebraic Conditions for Solvability of The FDI Problem
for (A,L, C)

The relationship between the index of (A,Li , C) and that of (A, Li ,C ) ∈
(A,Li , C).

Lemma 2

Consider the pattern matrix triple (A,Li , C). Then the following holds:

i Let (A, Li ,C ) ∈ (A,Li , C). If both the index ηi of (A,Li , C) and the
index di of (A, Li ,C ) exist, then di > ηi.

ii Suppose that the index ηi of (A,Li , C) exists, and suppose further
that at least one entry of CAηi−1Li is equal to ∗. Let
(A, Li ,C ) ∈ (A,Li , C). Then, the index di of (A, Li ,C ) exists and
di = ηi.

iii If the index of (A,Li , C) does not exist, then the index of (A, Li ,C )
does not exist for any (A, Li ,C ) ∈ (A,Li , C).
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An Example for Lemma 2

A =

0 0 0
∗ 0 0
0 0 0

 , L =

∗ 0 0
0 ∗ 0
0 ∗ ∗

 , C =

[
? ∗ 0
0 ∗ 0

]
. (3)
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 , L =

∗ 0 0
0 ∗ 0
0 ∗ ∗

 , C =

[
? ∗ 0
0 ∗ 0

]
. (3)

CL1 =

[
?
0

]
6= O, CL2 =

[
∗
∗

]
6= O,

CAkL3 = O for k = 0, 1, 2, . . . .

This implies that η1 = η2 = 1 and the index of (A,L3, C) not exists.
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An Example for Lemma 2

A =

 0 0 0
c1 0 0
0 0 0

, L =

c2 0 0
0 c3 0
0 c4 c5
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λ1 c6 0
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]
,
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Algebraic Conditions for Solvability of The FDI Problem
for (A,L, C)

A necessary condition for solvability of the FDI problem:

Theorem 3

Consider the system (A,L, C). Suppose that the FDI problem for (A,L, C)
is solvable. Then, the index ηi of (A,Li , C) exists for all i = 1, 2, . . . q.
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Algebraic Conditions for Solvability of The FDI Problem
for (A,L, C)

In the sequel, we will assume that for all i = 1, 2, . . . q the indices ηi
exist.

Define the following pattern matrix associated with (A,L, C):

R :=
[
CAη1−1L1 CAη2−1L2 · · · CAηq−1Lq

]
. (4)

We say that R has full column rank if all the matrices in the pattern
class P(R) have full column rank.
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Algebraic Conditions for Solvability of The FDI Problem
for (A,L, C)

In the sequel, we will assume that for all i = 1, 2, . . . q the indices ηi
exist.

Define the following pattern matrix associated with (A,L, C):

R :=
[
CAη1−1L1 CAη2−1L2 · · · CAηq−1Lq

]
. (4)

We say that R has full column rank if all the matrices in the pattern
class P(R) have full column rank.

Theorem 4

Consider the system (A,L, C). Let R be the pattern matrix given by (4).
The FDI problem for (A,L, C) is solvable if R has full column rank.
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An Example for Theorem 4

A =


∗ 0 0 0 0
∗ ? 0 ? 0
0 ∗ ∗ ? 0
∗ 0 0 ? ∗
0 0 ∗ 0 ∗

, L =


∗ 0
? ∗
0 0
0 0
0 0

, C =

0 0 0 ∗ 0
0 0 0 ? ?
0 0 0 ∗ ∗

 .
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 .

[
CL1 CAL1

]
=

0 ∗
0 ?
0 ∗

,
[
CL2 CAL2 CA2L2

]
=

0 0 0
0 0 ?
0 0 ∗


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∗ 0 0 0 0
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0 ∗ ∗ ? 0
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 .

R =
[
CAL1 CA2L2

]
=

∗ 0
? ?
∗ ∗

.
R =

c1 0
λ1 λ2

c2 c3

 ∈ P(R)

R has full column rank for all
choices ci and λj .

Therefore, the FDI problem for (A,L, C) is solvable.
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Graph-theoretic Conditions for Solvability of The FDI
Problem for (A,L, C)

1 Introduction

2 Problem Formulation

3 Conditions for Solvability of The FDI Problem for (A, L,C )

4 Algebraic Conditions for Solvability of The FDI Problem for (A,L, C)

5 Graph-theoretic Conditions for Solvability of The FDI Problem for
(A,L, C)

6 Summary
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Associated Graphs of Pattern Matrices

Given a pattern matrix M∈ {0, ∗, ?}p×q (p 6 q), we define the
associated graph G (M) = (V ,E ) as follows:
Node set V = {1, 2, . . . , q}.
Edge set E = E∗ ∪ E?, where E∗ = {(i , j) ∈ V × V | Mji = ∗} and
E? = {(i , j) ∈ V × V | Mji = ?}.

M =

[
∗ ? ∗
0 ? ∗

] 1 2

3

Figure: The graph G (M).
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Colorability of Graphs Associated with Pattern Matrices

Consider a graph G (M) with M∈ {0, ∗, ?}p×q (p 6 q).
1. Initially, color all nodes of G (M) white.
2. If a node i ∈ V (of any color) has

exactly one white out-neighbor j and
(i , j) ∈ E∗,

we change the color of j to black.
3. Repeat the Step 2 until no more color changes are possible.

The G (M) is called colorable if all the nodes in {1, 2, . . . , p} are
colored black finally.

M =

[
∗ ? ∗
0 ? ∗

]
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A Graph-theoretic Condition for Solvability of The FDI
Problem

Define the transpose of R as the pattern matrix R> ∈ {0, ∗, ?}s×r with
(R>)ij = Rji for i = 1, 2, . . . , s and j = 1, 2, . . . , r .

Theorem 5

Consider the system (A,L, C). Suppose that the indices ηi exists for
i = 1, 2, . . . , q. Let R be the pattern matrix given by (4). Then, the FDI
problem for (A,L, C) is solvable if G (R>) is colorable.
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An Example for Theorem 5

A =


∗ 0 0 0 0
∗ ? 0 ? 0
0 ∗ ∗ ? 0
∗ 0 0 ? ∗
0 0 ∗ 0 ∗

, L =


∗ 0
? ∗
0 0
0 0
0 0

, C =

0 0 0 ∗ 0
0 0 0 ? ?
0 0 0 ∗ ∗

 .
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The FDI problem for (A,L, C) is solvable.
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Summary

Formalize the solvability of the FDI problem for linear structured
systems.

Establish a necessary and sufficient condition for solvability of the FDI
problem for a given particular LTI system.

Establish a sufficient condition for solvability of the FDI problem in
terms of a rank test on a pattern matrix associated with the
structured system.

Establish a graph-theoretic condition for solvability of the FDI
problem using the concept of colorability of a graph.
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For Further Reading I

J. Jia, H. L. Trentelman and M. K. Camlibel (2020).
Fault Detection and Isolation for Linear Structured Systems.
https://arxiv.org/abs/2003.01502
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Thank You for Your Attention!
The End
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