Fault Detection and Isolation for Linear Structured Systems

J. Jia, H. L. Trentelman and M. K. Camlibel

Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, The Netherlands

Benelux Meeting on Systems and Control, 2020

university of groningen

Overview

(1) Introduction
(2) Problem Formulation
(3) Conditions for Solvability of The FDI Problem for (A, L, C)
(4) Algebraic Conditions for Solvability of The FDI Problem for $(\mathcal{A}, \mathcal{L}, \mathcal{C})$
(5) Graph-theoretic Conditions for Solvability of The FDI Problem for $(\mathcal{A}, \mathcal{L}, \mathcal{C})$
(6) Summary

Geometric Approach to The FDI Problem for Linear

Systems

- $\Sigma:\left\{\begin{array}{ll}\dot{x} & =A x+L f \\ y & =C x\end{array}, x \in \mathbb{R}^{n}, f \in \mathbb{R}^{q}, y \in \mathbb{R}^{p}\right.$. Denoted by (A, L, C).

Geometric Approach to The FDI Problem for Linear

Systems

- $\Sigma:\left\{\begin{array}{l}\dot{x}=A x+L f \\ y=C x\end{array}, x \in \mathbb{R}^{n}, f \in \mathbb{R}^{q}, y \in \mathbb{R}^{p}\right.$. Denoted by (A, L, C).
- The i th fault occurs if $f_{i} \neq 0$ (i.e., not identically equal to 0).

Geometric Approach to The FDI Problem for Linear

Systems

- $\Sigma:\left\{\begin{array}{l}\dot{x}=A x+L f \\ y=C x\end{array}, x \in \mathbb{R}^{n}, f \in \mathbb{R}^{q}, y \in \mathbb{R}^{p}\right.$. Denoted by (A, L, C).
- The i th fault occurs if $f_{i} \neq 0$ (i.e., not identically equal to 0).
- $\Omega: \quad \dot{\hat{x}}=(A+G C) \hat{x}-G y, \quad G \in \mathbb{R}^{n \times p}$,

Geometric Approach to The FDI Problem for Linear

Systems

- $\Sigma:\left\{\begin{array}{l}\dot{x}=A x+L f \\ y=C x\end{array}, x \in \mathbb{R}^{n}, f \in \mathbb{R}^{q}, y \in \mathbb{R}^{p}\right.$. Denoted by (A, L, C).
- The i th fault occurs if $f_{i} \neq 0$ (i.e., not identically equal to 0).
- $\Omega: \quad \dot{\hat{x}}=(A+G C) \hat{x}-G y, \quad G \in \mathbb{R}^{n \times p}$, such that $\left\{C \mathcal{V}_{i}\right\}_{i=1}^{q}$ are independent, i.e., $C \mathcal{V}_{i} \neq\{0\}$ and $C \mathcal{V}_{i} \cap C \mathcal{V}_{j}=\{0\} \forall i \neq j$, where \mathcal{V}_{i} is the smallest $(A+G C)$-invariant subspace containing $\operatorname{im} L_{i}$.

Geometric Approach to The FDI Problem for Linear

Systems

- $\Sigma:\left\{\begin{array}{l}\dot{x}=A x+L f \\ y=C x\end{array}, x \in \mathbb{R}^{n}, f \in \mathbb{R}^{q}, y \in \mathbb{R}^{p}\right.$. Denoted by (A, L, C).
- The i th fault occurs if $f_{i} \neq 0$ (i.e., not identically equal to 0).
- $\Omega: \quad \dot{\hat{x}}=(A+G C) \hat{x}-G y, \quad G \in \mathbb{R}^{n \times p}$, such that $\left\{C \mathcal{V}_{i}\right\}_{i=1}^{q}$ are independent, i.e., $C \mathcal{V}_{i} \neq\{0\}$ and $C \mathcal{V}_{i} \cap C \mathcal{V}_{j}=\{0\} \forall i \neq j$, where \mathcal{V}_{i} is the smallest $(A+G C)$-invariant subspace containing im L_{i}.

Geometric Approach to The FDI Problem for Linear

Systems

- $r:=C \hat{x}-y, e:=\hat{x}-x$

Geometric Approach to The FDI Problem for Linear

Systems

- $r:=C \hat{x}-y, e:=\hat{x}-x$
- $\begin{cases}\dot{e} & =(A+G C) e-L f, \\ r & =C e .\end{cases}$

Geometric Approach to The FDI Problem for Linear

Systems

- $r:=C \hat{x}-y, e:=\hat{x}-x$
- $\left\{\begin{array}{l}\dot{e}=(A+G C) e-L f, \\ r=C e .\end{array}\right.$
- In this work, we do not require $e(t) \rightarrow 0$, and assume $e(0)=0$.

Geometric Approach to The FDI Problem for Linear

Systems

- $r:=C \hat{x}-y, e:=\hat{x}-x$
- $\begin{cases}\dot{e} & =(A+G C) e-L f, \\ r & =C e .\end{cases}$
- In this work, we do not require $e(t) \rightarrow 0$, and assume $e(0)=0$.
- $e(t) \in \mathcal{V}_{1}+\mathcal{V}_{2}+\ldots+\mathcal{V}_{q}$ and $r(t) \in C \mathcal{V}_{1}+C \mathcal{V}_{2}+\ldots+C \mathcal{V}_{q}$.

Geometric Approach to The FDI Problem for Linear

Systems

- $r:=C \hat{x}-y, e:=\hat{x}-x$
- $\left\{\begin{array}{l}\dot{e}=(A+G C) e-L f, \\ r=C e .\end{array}\right.$
- In this work, we do not require $e(t) \rightarrow 0$, and assume $e(0)=0$.
- $e(t) \in \mathcal{V}_{1}+\mathcal{V}_{2}+\ldots+\mathcal{V}_{q}$ and $r(t) \in C \mathcal{V}_{1}+C \mathcal{V}_{2}+\ldots+C \mathcal{V}_{q}$.
- Since $\left\{C \mathcal{V}_{i}\right\}_{i=1}^{q}$ are independent, $r(t)$ can be written uniquely as $r(t)=r_{1}(t)+r_{2}(t)+\cdots+r_{q}(t)$ with $r_{i}(t) \in C \mathcal{V}_{i}$ for all t.

Geometric Approach to The FDI Problem for Linear

Systems

- $r:=C \hat{x}-y, e:=\hat{x}-x$
- $\left\{\begin{array}{l}\dot{e}=(A+G C) e-L f, \\ r=C e .\end{array}\right.$
- In this work, we do not require $e(t) \rightarrow 0$, and assume $e(0)=0$.
- $e(t) \in \mathcal{V}_{1}+\mathcal{V}_{2}+\ldots+\mathcal{V}_{q}$ and $r(t) \in C \mathcal{V}_{1}+C \mathcal{V}_{2}+\ldots+C \mathcal{V}_{q}$.
- Since $\left\{C \mathcal{V}_{i}\right\}_{i=1}^{q}$ are independent, $r(t)$ can be written uniquely as $r(t)=r_{1}(t)+r_{2}(t)+\cdots+r_{q}(t)$ with $r_{i}(t) \in C \mathcal{V}_{i}$ for all t.
- Indeed, $r_{i} \neq 0$ only if $f_{i} \neq 0$, i.e., $r_{i} \neq 0$ implies that the i th fault occurs.

Geometric Approach to The FDI Problem for Linear

Systems

- $r:=C \hat{x}-y, e:=\hat{x}-x$
- $\begin{cases}\dot{e} & =(A+G C) e-L f, \\ r & =C e .\end{cases}$
- In this work, we do not require $e(t) \rightarrow 0$, and assume $e(0)=0$.
- $e(t) \in \mathcal{V}_{1}+\mathcal{V}_{2}+\ldots+\mathcal{V}_{q}$ and $r(t) \in C \mathcal{V}_{1}+C \mathcal{V}_{2}+\ldots+C \mathcal{V}_{q}$.
- Since $\left\{C \mathcal{V}_{i}\right\}_{i=1}^{q}$ are independent, $r(t)$ can be written uniquely as $r(t)=r_{1}(t)+r_{2}(t)+\cdots+r_{q}(t)$ with $r_{i}(t) \in C \mathcal{V}_{i}$ for all t.
- Indeed, $r_{i} \neq 0$ only if $f_{i} \neq 0$, i.e., $r_{i} \neq 0$ implies that the i th fault occurs.
- The FDI problem is solvable for (A, L, C) if $\exists G$ such that $\left\{C \mathcal{V}_{i}\right\}_{i=1}^{q}$ are independent.

The FDI Problem for Linear Structured Systems

- The FDI problem is solvable for (A, L, C) if $\left\{C \mathcal{S}_{i}^{*}\right\}_{i=1}^{q}$ independent, where \mathcal{S}_{i}^{*} is the smallest (C, A)-invariant subspace containing im $L_{i} .{ }^{1}$
${ }^{1}$ M. -A. Massoumnia (1986), 'A Geometric Approach to The Synthesis of Failure Detection Filters.'

The FDI Problem for Linear Structured Systems

- The FDI problem is solvable for (A, L, C) if $\left\{C \mathcal{S}_{i}^{*}\right\}_{i=1}^{q}$ independent, where \mathcal{S}_{i}^{*} is the smallest (C, A)-invariant subspace containing im $L_{i} .{ }^{1}$
- In many scenarios, the exact values of entries in A, L and C are not known, but some patterns of A, L and C are known exactly.

The FDI Problem for Linear Structured Systems

- The FDI problem is solvable for (A, L, C) if $\left\{C \mathcal{S}_{i}^{*}\right\}_{i=1}^{q}$ independent, where \mathcal{S}_{i}^{*} is the smallest (C, A)-invariant subspace containing im $L_{i} .{ }^{1}$
- In many scenarios, the exact values of entries in A, L and C are not known, but some patterns of A, L and C are known exactly.

For example:

$$
A=\left[\begin{array}{ccccc}
c_{1} & 0 & 0 & 0 & 0 \\
c_{2} & \lambda_{1} & 0 & \lambda_{2} & 0 \\
0 & c_{3} & c_{4} & \lambda_{3} & 0 \\
c_{5} & 0 & 0 & \lambda_{4} & c_{6} \\
0 & 0 & c_{7} & 0 & c_{8}
\end{array}\right], \quad L=\left[\begin{array}{cc}
c_{9} & 0 \\
\lambda_{5} & c_{10} \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right], \quad C=\left[\begin{array}{ccccc}
0 & 0 & 0 & c_{11} & 0 \\
0 & 0 & 0 & \lambda_{6} & \lambda_{7} \\
0 & 0 & 0 & c_{12} & c_{13}
\end{array}\right],
$$

where $c_{1}, c_{2}, \ldots, c_{13}$ are nonzero real numbers, and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{7}$ are arbitrary real numbers.

Pattern Matrices and Pattern Classes

- Given a pattern matrix $\mathcal{M} \in\{0, *, ?\}^{p \times q}$, we define the pattern class of \mathcal{M} as ${ }^{2}$

$$
\begin{aligned}
& \mathcal{P}(\mathcal{M}):=\left\{M \in \mathbb{R}^{p \times q} \mid M_{i j}\right.=0 \text { if } \mathcal{M}_{i j}=0 \\
&\left.M_{i j} \neq 0 \text { if } \mathcal{M}_{i j}=* .\right\}
\end{aligned}
$$

[^0]
Pattern Matrices and Pattern Classes

- Given a pattern matrix $\mathcal{M} \in\{0, *, ?\}^{p \times q}$, we define the pattern class of \mathcal{M} as ${ }^{2}$

$$
\begin{aligned}
\mathcal{P}(\mathcal{M}):=\left\{M \in \mathbb{R}^{p \times q} \mid M_{i j}\right. & =0 \text { if } \mathcal{M}_{i j}=0, \\
M_{i j} & \left.\neq 0 \text { if } \mathcal{M}_{i j}=* .\right\}
\end{aligned}
$$

$\mathcal{M}=\left[\begin{array}{lll}* & 0 & * \\ 0 & 0 & * \\ ? & * & *\end{array}\right]$
$\mathcal{M} \in\{0, *, ?\}^{3 \times 3}$

Pattern Matrices and Pattern Classes

- Given a pattern matrix $\mathcal{M} \in\{0, *, ?\}^{p \times q}$, we define the pattern class of \mathcal{M} as ${ }^{2}$

$$
\begin{aligned}
\mathcal{P}(\mathcal{M}):=\left\{M \in \mathbb{R}^{p \times q} \mid M_{i j}\right. & =0 \text { if } \mathcal{M}_{i j}=0, \\
M_{i j} & \left.\neq 0 \text { if } \mathcal{M}_{i j}=* .\right\}
\end{aligned}
$$

$\mathcal{M}=\left[\begin{array}{lll}* & 0 & * \\ 0 & 0 & * \\ ? & * & *\end{array}\right] \quad\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 0 & 2 \\ 1 & 1 & 3\end{array}\right] \in \mathcal{P}(\mathcal{M})$
$\mathcal{M} \in\{0, *, ?\}^{3 \times 3}$

Pattern Matrices and Pattern Classes

- Given a pattern matrix $\mathcal{M} \in\{0, *, ?\}^{p \times q}$, we define the pattern class of \mathcal{M} as ${ }^{2}$

$$
\begin{aligned}
\mathcal{P}(\mathcal{M}):=\left\{M \in \mathbb{R}^{p \times q} \mid M_{i j}\right. & =0 \text { if } \mathcal{M}_{i j}=0, \\
M_{i j} & \left.\neq 0 \text { if } \mathcal{M}_{i j}=* .\right\}
\end{aligned}
$$

$\mathcal{M}=\left[\begin{array}{lll}* & 0 & * \\ 0 & 0 & * \\ ? & * & *\end{array}\right] \quad\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 0 & 2 \\ 1 & 1 & 3\end{array}\right] \in \mathcal{P}(\mathcal{M}) \quad\left[\begin{array}{lll}1 & 1 & 2 \\ 0 & 0 & 2 \\ 1 & 1 & 3\end{array}\right] \notin \mathcal{P}(\mathcal{M})$

$$
\mathcal{M} \in\{0, *, ?\}^{3 \times 3}
$$

The FDI Problem for $(\mathcal{A}, \mathcal{L}, \mathcal{C})$

Let $\mathcal{A} \in\{0, *, ?\}^{n \times n}, \mathcal{L} \in\{0, *, ?\}^{n \times q}$ and $\mathcal{C} \in\{0, *, ?\}^{p \times n}$. We call the family of systems of the form

$$
\begin{align*}
& \dot{x}=A x+L f \\
& y=C x, \tag{1}
\end{align*}
$$

where $A \in \mathcal{P}(\mathcal{A}), L \in \mathcal{P}(\mathcal{L})$ and $C \in \mathcal{P}(\mathcal{C})$, the linear structured system associated with \mathcal{A}, \mathcal{L} and \mathcal{C}, represented by $(\mathcal{A}, \mathcal{L}, \mathcal{C})$.

The FDI Problem for $(\mathcal{A}, \mathcal{L}, \mathcal{C})$

Let $\mathcal{A} \in\{0, *, ?\}^{n \times n}, \mathcal{L} \in\{0, *, ?\}^{n \times q}$ and $\mathcal{C} \in\{0, *, ?\}^{p \times n}$. We call the family of systems of the form

$$
\begin{align*}
& \dot{x}=A x+L f \\
& y=C x, \tag{1}
\end{align*}
$$

where $A \in \mathcal{P}(\mathcal{A}), L \in \mathcal{P}(\mathcal{L})$ and $C \in \mathcal{P}(\mathcal{C})$, the linear structured system associated with \mathcal{A}, \mathcal{L} and \mathcal{C}, represented by $(\mathcal{A}, \mathcal{L}, \mathcal{C})$.
We say $(A, L, C) \in(\mathcal{A}, \mathcal{L}, \mathcal{C})$ if $A \in \mathcal{P}(\mathcal{A}), L \in \mathcal{P}(\mathcal{L})$ and $C \in \mathcal{P}(\mathcal{C})$.

The FDI Problem for $(\mathcal{A}, \mathcal{L}, \mathcal{C})$

Let $\mathcal{A} \in\{0, *, ?\}^{n \times n}, \mathcal{L} \in\{0, *, ?\}^{n \times q}$ and $\mathcal{C} \in\{0, *, ?\}^{p \times n}$. We call the family of systems of the form

$$
\begin{align*}
& \dot{x}=A x+L f \\
& y=C x, \tag{1}
\end{align*}
$$

where $A \in \mathcal{P}(\mathcal{A}), L \in \mathcal{P}(\mathcal{L})$ and $C \in \mathcal{P}(\mathcal{C})$, the linear structured system associated with \mathcal{A}, \mathcal{L} and \mathcal{C}, represented by $(\mathcal{A}, \mathcal{L}, \mathcal{C})$.
We say $(A, L, C) \in(\mathcal{A}, \mathcal{L}, \mathcal{C})$ if $A \in \mathcal{P}(\mathcal{A}), L \in \mathcal{P}(\mathcal{L})$ and $C \in \mathcal{P}(\mathcal{C})$.

- Research directions of the FDI problem for $(\mathcal{A}, \mathcal{L}, \mathcal{C})$:

The FDI Problem for $(\mathcal{A}, \mathcal{L}, \mathcal{C})$

Let $\mathcal{A} \in\{0, *, ?\}^{n \times n}, \mathcal{L} \in\{0, *, ?\}^{n \times q}$ and $\mathcal{C} \in\{0, *, ?\}^{p \times n}$. We call the family of systems of the form

$$
\begin{align*}
& \dot{x}=A x+L f \\
& y=C x, \tag{1}
\end{align*}
$$

where $A \in \mathcal{P}(\mathcal{A}), L \in \mathcal{P}(\mathcal{L})$ and $C \in \mathcal{P}(\mathcal{C})$, the linear structured system associated with \mathcal{A}, \mathcal{L} and \mathcal{C}, represented by $(\mathcal{A}, \mathcal{L}, \mathcal{C})$.
We say $(A, L, C) \in(\mathcal{A}, \mathcal{L}, \mathcal{C})$ if $A \in \mathcal{P}(\mathcal{A}), L \in \mathcal{P}(\mathcal{L})$ and $C \in \mathcal{P}(\mathcal{C})$.

- Research directions of the FDI problem for $(\mathcal{A}, \mathcal{L}, \mathcal{C})$:
(1) The FDI problem is solvable for at least one member of a given structured system. ${ }^{3}$

[^1]
The FDI Problem for $(\mathcal{A}, \mathcal{L}, \mathcal{C})$

Let $\mathcal{A} \in\{0, *, ?\}^{n \times n}, \mathcal{L} \in\{0, *, ?\}^{n \times q}$ and $\mathcal{C} \in\{0, *, ?\}^{p \times n}$. We call the family of systems of the form

$$
\begin{align*}
& \dot{x}=A x+L f \\
& y=C x, \tag{1}
\end{align*}
$$

where $A \in \mathcal{P}(\mathcal{A}), L \in \mathcal{P}(\mathcal{L})$ and $C \in \mathcal{P}(\mathcal{C})$, the linear structured system associated with \mathcal{A}, \mathcal{L} and \mathcal{C}, represented by $(\mathcal{A}, \mathcal{L}, \mathcal{C})$.
We say $(A, L, C) \in(\mathcal{A}, \mathcal{L}, \mathcal{C})$ if $A \in \mathcal{P}(\mathcal{A}), L \in \mathcal{P}(\mathcal{L})$ and $C \in \mathcal{P}(\mathcal{C})$.

- Research directions of the FDI problem for $(\mathcal{A}, \mathcal{L}, \mathcal{C})$:
(1) The FDI problem is solvable for at least one member of a given structured system. ${ }^{3}$
(2) The FDI problem is solvable for all members of a given structured system. ${ }^{4}$

[^2]
Problem Formulation

(1) Introduction
(2) Problem Formulation
(3) Conditions for Solvability of The FDI Problem for (A, L, C)
4) Algebraic Conditions for Solvability of The FDI Problem for $(\mathcal{A}, \mathcal{L}, \mathcal{C})$
(5) Graph-theoretic Conditions for Solvability of The FDI Problem for $(\mathcal{A}, \mathcal{L}, \mathcal{C})$

6 Summary

Problem Formulation

- Define the FDI problem for $(\mathcal{A}, \mathcal{L}, \mathcal{C})$ to be solvable if the FDI problem is solvable for every $(A, L, C) \in(\mathcal{A}, \mathcal{L}, \mathcal{C})$.

Problem Formulation

- Define the FDI problem for $(\mathcal{A}, \mathcal{L}, \mathcal{C})$ to be solvable if the FDI problem is solvable for every $(A, L, C) \in(\mathcal{A}, \mathcal{L}, \mathcal{C})$.
- For general $\mathcal{A} \in\{0, *, ?\}^{n \times n}, \mathcal{L} \in\{0, *, ?\}^{n \times q}$ and $\mathcal{C} \in\{0, *, ?\}^{p \times n}$, the conditions for solvability of the FDI problem for $(\mathcal{A}, \mathcal{L}, \mathcal{C})$ are still absent.

Problem Formulation

- Define the FDI problem for $(\mathcal{A}, \mathcal{L}, \mathcal{C})$ to be solvable if the FDI problem is solvable for every $(A, L, C) \in(\mathcal{A}, \mathcal{L}, \mathcal{C})$.
- For general $\mathcal{A} \in\{0, *, ?\}^{n \times n}, \mathcal{L} \in\{0, *, ?\}^{n \times q}$ and $\mathcal{C} \in\{0, *, ?\}^{p \times n}$, the conditions for solvability of the FDI problem for $(\mathcal{A}, \mathcal{L}, \mathcal{C})$ are still absent.
- Problem: Given $(\mathcal{A}, \mathcal{L}, \mathcal{C})$, find conditions under which the FDI problem for $(\mathcal{A}, \mathcal{L}, \mathcal{C})$ is solvable.

Conditions for Solvability of The FDI Problem for (A, L, C)

(1) Introduction
(2) Problem Formulation
(3) Conditions for Solvability of The FDI Problem for (A, L, C)
4) Algebraic Conditions for Solvability of The FDI Problem for $(\mathcal{A}, \mathcal{L}, \mathcal{C})$
(5) Graph-theoretic Conditions for Solvability of The FDI Problem for $(\mathcal{A}, \mathcal{L}, \mathcal{C})$
(6) Summary

A Necessary and Sufficient Condition for Solvability of The FDI Problem for (A, L, C)

Let d_{i} be a positive integer such that

$$
C A^{j} L_{i}=0 \text { for } j=0,1, \ldots, d_{i}-2 \text { and } C A^{d_{i}-1} L_{i} \neq 0
$$

If this d_{i} exists, we then call it the index of $\left(A, L_{i}, C\right)$.

A Necessary and Sufficient Condition for Solvability of The FDI Problem for (A, L, C)

Let d_{i} be a positive integer such that

$$
C A^{j} L_{i}=0 \text { for } j=0,1, \ldots, d_{i}-2 \text { and } C A^{d_{i}-1} L_{i} \neq 0
$$

If this d_{i} exists, we then call it the index of $\left(A, L_{i}, C\right)$.

Theorem 1

Consider the system (A, L, C) of the form (1). The FDI problem for (A, L, C) is solvable if and only if the index d_{i} exists for $i=1,2, \ldots, q$, and the matrix R has full column rank, where R is defined by

$$
R:=\left[\begin{array}{llll}
C A^{d_{1}-1} L_{1} & C A^{d_{2}-1} L_{2} & \cdots & C A^{d_{q}-1} L_{q} \tag{2}
\end{array}\right] .
$$

Algebraic Conditions for Solvability of The FDI Problem for ($\mathcal{A}, \mathcal{L}, \mathcal{C}$)

(1) Introduction
(2) Problem Formulation
(3) Conditions for Solvability of The FDI Problem for (A, L, C)
(4) Algebraic Conditions for Solvability of The FDI Problem for $(\mathcal{A}, \mathcal{L}, \mathcal{C})$
(5) Graph-theoretic Conditions for Solvability of The FDI Problem for $(\mathcal{A}, \mathcal{L}, \mathcal{C})$
(6) Summary

Operations of Pattern Matrices

Table: Addition and multiplication within the set $\{0, *, ?\} .{ }^{5}$

+	0	$*$	$?$
0	0	$*$	$?$
$*$	$*$	$?$	$?$
$?$	$?$	$?$	$?$

\cdot	0	$*$	$?$
0	0	0	0
$*$	0	$*$	$?$
$?$	0	$?$	$?$

[^3]
Operations of Pattern Matrices

Table: Addition and multiplication within the set $\{0, *, ?\} .{ }^{5}$

+	0	$*$	$?$
0	0	$*$	$?$
$*$	$*$	$?$	$?$
$?$	$?$	$?$	$?$

\cdot	0	$*$	$?$
0	0	0	0
$*$	0	$*$	$?$
$?$	0	$?$	$?$

Let $\mathcal{M} \in\{0, *, ?\}^{r \times s}$ and $\mathcal{N} \in\{0, *, ?\}^{s \times t}$. Define $\mathcal{M} \mathcal{N} \in\{0, *, ?\}^{r \times t}$ by

$$
(\mathcal{M N})_{i j}:=\sum_{k=1}^{q}\left(\mathcal{M}_{i k} \cdot \mathcal{N}_{k j}\right) \quad i=1,2, \ldots, r, \quad j=1,2, \ldots, t
$$

Operations of Pattern Matrices

Table: Addition and multiplication within the set $\{0, *, ?\} .{ }^{5}$

+	0	$*$	$?$
0	0	$*$	$?$
$*$	$*$	$?$	$?$
$?$	$?$	$?$	$?$

\cdot	0	$*$	$?$
0	0	0	0
$*$	0	$*$	$?$
$?$	0	$?$	$?$

Let $\mathcal{M} \in\{0, *, ?\}^{r \times s}$ and $\mathcal{N} \in\{0, *, ?\}^{s \times t}$. Define $\mathcal{M} \mathcal{N} \in\{0, *, ?\}^{r \times t}$ by

$$
(\mathcal{M N})_{i j}:=\sum_{k=1}^{q}\left(\mathcal{M}_{i k} \cdot \mathcal{N}_{k j}\right) \quad i=1,2, \ldots, r, \quad j=1,2, \ldots, t
$$

If $r=s$, we call \mathcal{M} a square pattern matrix. Define the k th power \mathcal{M}^{k} recursively by $\mathcal{M}^{0}=\mathcal{I}, \quad \mathcal{M}^{i}=\mathcal{M}^{i-1} \mathcal{M}, \quad i=1,2, \ldots, k$.

Algebraic Conditions for Solvability of The FDI Problem for ($\mathcal{A}, \mathcal{L}, \mathcal{C}$)

Let η_{i} be a positive integer such that $\mathcal{C} \mathcal{A}^{j} \mathcal{L}_{i}=\mathcal{O}$ for $j=0,1, \ldots, \eta_{i}-2$ and $\mathcal{C} \mathcal{A}^{\eta_{i}-1} \mathcal{L}_{i} \neq \mathcal{O}$. If η_{i} exists, then we call it the index of $\left(\mathcal{A}, \mathcal{L}_{i}, \mathcal{C}\right)$.

Algebraic Conditions for Solvability of The FDI Problem for ($\mathcal{A}, \mathcal{L}, \mathcal{C}$)

The relationship between the index of $\left(\mathcal{A}, \mathcal{L}_{i}, \mathcal{C}\right)$ and that of $\left(A, L_{i}, C\right) \in$ $\left(\mathcal{A}, \mathcal{L}_{i}, \mathcal{C}\right)$.

Algebraic Conditions for Solvability of The FDI Problem

 for $(\mathcal{A}, \mathcal{L}, \mathcal{C})$The relationship between the index of $\left(\mathcal{A}, \mathcal{L}_{i}, \mathcal{C}\right)$ and that of $\left(A, L_{i}, C\right) \in$ $\left(\mathcal{A}, \mathcal{L}_{i}, \mathcal{C}\right)$.

Lemma 2

Consider the pattern matrix triple $\left(\mathcal{A}, \mathcal{L}_{i}, \mathcal{C}\right)$. Then the following holds:
(1) Let $\left(A, L_{i}, C\right) \in\left(\mathcal{A}, \mathcal{L}_{i}, \mathcal{C}\right)$. If both the index η_{i} of $\left(\mathcal{A}, \mathcal{L}_{i}, \mathcal{C}\right)$ and the index d_{i} of $\left(A, L_{i}, C\right)$ exist, then $\mathbf{d}_{\mathbf{i}} \geqslant \eta_{\mathbf{i}}$.
(1) Suppose that the index η_{i} of $\left(\mathcal{A}, \mathcal{L}_{i}, \mathcal{C}\right)$ exists, and suppose further that at least one entry of $\mathcal{C} \mathcal{A}^{\eta_{i}-1} \mathcal{L}_{i}$ is equal to $*$. Let $\left(A, L_{i}, C\right) \in\left(\mathcal{A}, \mathcal{L}_{i}, \mathcal{C}\right)$. Then, the index d_{i} of $\left(A, L_{i}, C\right)$ exists and $\mathbf{d}_{\mathbf{i}}=\eta_{\mathbf{i}}$.
(1) If the index of $\left(\mathcal{A}, \mathcal{L}_{i}, \mathcal{C}\right)$ does not exist, then the index of $\left(A, L_{i}, C\right)$ does not exist for any $\left(A, L_{i}, C\right) \in\left(\mathcal{A}, \mathcal{L}_{i}, \mathcal{C}\right)$.

An Example for Lemma 2

$$
\mathcal{A}=\left[\begin{array}{lll}
0 & 0 & 0 \tag{3}\\
* & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \mathcal{L}=\left[\begin{array}{lll}
* & 0 & 0 \\
0 & * & 0 \\
0 & * & *
\end{array}\right], \mathcal{C}=\left[\begin{array}{lll}
? & * & 0 \\
0 & * & 0
\end{array}\right] .
$$

An Example for Lemma 2

$$
\begin{gathered}
\mathcal{A}=\left[\begin{array}{lll}
0 & 0 & 0 \\
* & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \mathcal{L}=\left[\begin{array}{lll}
* & 0 & 0 \\
0 & * & 0 \\
0 & * & *
\end{array}\right], \mathcal{C}=\left[\begin{array}{lll}
? & * & 0 \\
0 & * & 0
\end{array}\right] . \\
\mathcal{C} \mathcal{L}_{1}=\left[\begin{array}{l}
? \\
0
\end{array}\right] \neq \mathcal{O}, \mathcal{C} \mathcal{L}_{2}=\left[\begin{array}{c}
* \\
*
\end{array}\right] \neq \mathcal{O} \\
\mathcal{C} \mathcal{A}^{k} \mathcal{L}_{3}=\mathcal{O} \text { for } k=0,1,2, \ldots
\end{gathered}
$$

This implies that $\eta_{1}=\eta_{2}=1$ and the index of $\left(\mathcal{A}, \mathcal{L}_{3}, \mathcal{C}\right)$ not exists.

An Example for Lemma 2

$$
A=\left[\begin{array}{ccc}
0 & 0 & 0 \\
c 1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], L=\left[\begin{array}{ccc}
c_{2} & 0 & 0 \\
0 & c_{3} & 0 \\
0 & c_{4} & c_{5}
\end{array}\right], \quad C=\left[\begin{array}{ccc}
\lambda_{1} & c_{6} & 0 \\
0 & c_{7} & 0
\end{array}\right],
$$

An Example for Lemma 2

$$
\left.\begin{array}{c}
A=\left[\begin{array}{ccc}
0 & 0 & 0 \\
c 1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], L=\left[\begin{array}{ccc}
c_{2} & 0 & 0 \\
0 & c_{3} & 0 \\
0 & c_{4} & c_{5}
\end{array}\right], C=\left[\begin{array}{ccc}
\lambda_{1} & c_{6} & 0 \\
0 & c_{7} & 0
\end{array}\right], \\
{\left[C L_{1} \quad C L_{2}\right.}
\end{array}\right]=\left[\begin{array}{cc}
\lambda_{1} c_{2} & c_{3} c_{6} \\
0 & c_{3} c_{9}
\end{array}\right], \quad C A L_{1}=\left[\begin{array}{l}
c_{1} c_{2} c_{6} \\
c_{1} c_{2} c_{7}
\end{array}\right] .
$$

An Example for Lemma 2

$$
\begin{gathered}
A=\left[\begin{array}{ccc}
0 & 0 & 0 \\
c 1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], L=\left[\begin{array}{ccc}
c_{2} & 0 & 0 \\
0 & c_{3} & 0 \\
0 & c_{4} & c_{5}
\end{array}\right], C=\left[\begin{array}{ccc}
\lambda_{1} & c_{6} & 0 \\
0 & c_{7} & 0
\end{array}\right], \\
{\left[\begin{array}{ll}
C L_{1} & C L_{2}
\end{array}\right]=\left[\begin{array}{cc}
\lambda_{1} c_{2} & c_{3} c_{6} \\
0 & c_{3} c_{9}
\end{array}\right], \quad C A L_{1}=\left[\begin{array}{l}
c_{1} c_{2} c_{6} \\
c_{1} c_{2} c_{7}
\end{array}\right] .} \\
C A^{k} L_{3}=0 \text { for } k=0,1, \ldots
\end{gathered}
$$

- $d_{1} \geqslant \eta_{1}$: If $\lambda_{1}=0$ then $d_{1}=2>\eta_{1}$ and otherwise $d_{1}=1=\eta_{1}$;

An Example for Lemma 2

$$
\begin{gathered}
A=\left[\begin{array}{ccc}
0 & 0 & 0 \\
c 1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], L=\left[\begin{array}{ccc}
c_{2} & 0 & 0 \\
0 & c_{3} & 0 \\
0 & c_{4} & c_{5}
\end{array}\right], C=\left[\begin{array}{ccc}
\lambda_{1} & c_{6} & 0 \\
0 & c_{7} & 0
\end{array}\right], \\
{\left[\begin{array}{ll}
C L_{1} & C L_{2}
\end{array}\right]=\left[\begin{array}{cc}
\lambda_{1} c_{2} & c_{3} c_{6} \\
0 & c_{3} c_{9}
\end{array}\right], \quad C A L_{1}=\left[\begin{array}{l}
c_{1} c_{2} c_{6} \\
c_{1} c_{2} c_{7}
\end{array}\right] .} \\
C A^{k} L_{3}=0 \text { for } k=0,1, \ldots
\end{gathered}
$$

- $d_{1} \geqslant \eta_{1}$: If $\lambda_{1}=0$ then $d_{1}=2>\eta_{1}$ and otherwise $d_{1}=1=\eta_{1}$;
- $d_{2}=1=\eta_{2}$;

An Example for Lemma 2

$$
\begin{gathered}
A=\left[\begin{array}{ccc}
0 & 0 & 0 \\
c 1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], L=\left[\begin{array}{ccc}
c_{2} & 0 & 0 \\
0 & c_{3} & 0 \\
0 & c_{4} & c_{5}
\end{array}\right], C=\left[\begin{array}{ccc}
\lambda_{1} & c_{6} & 0 \\
0 & c_{7} & 0
\end{array}\right], \\
{\left[\begin{array}{ll}
C L_{1} & C L_{2}
\end{array}\right]=\left[\begin{array}{cc}
\lambda_{1} c_{2} & c_{3} c_{6} \\
0 & c_{3} c_{9}
\end{array}\right], \quad C A L_{1}=\left[\begin{array}{l}
c_{1} c_{2} c_{6} \\
c_{1} c_{2} c_{7}
\end{array}\right] .} \\
C A^{k} L_{3}=0 \text { for } k=0,1, \ldots
\end{gathered}
$$

- $d_{1} \geqslant \eta_{1}$: If $\lambda_{1}=0$ then $d_{1}=2>\eta_{1}$ and otherwise $d_{1}=1=\eta_{1}$;
- $d_{2}=1=\eta_{2}$;
- The index of $\left(A, L_{3}, C\right)$ does not exist.

Algebraic Conditions for Solvability of The FDI Problem for ($\mathcal{A}, \mathcal{L}, \mathcal{C}$)

A necessary condition for solvability of the FDI problem:

Theorem 3

Consider the system $(\mathcal{A}, \mathcal{L}, \mathcal{C})$. Suppose that the FDI problem for $(\mathcal{A}, \mathcal{L}, \mathcal{C})$ is solvable. Then, the index η_{i} of $\left(\mathcal{A}, \mathcal{L}_{i}, \mathcal{C}\right)$ exists for all $i=1,2, \ldots q$.

Algebraic Conditions for Solvability of The FDI Problem for $(\mathcal{A}, \mathcal{L}, \mathcal{C})$

- In the sequel, we will assume that for all $i=1,2, \ldots q$ the indices η_{i} exist.

Algebraic Conditions for Solvability of The FDI Problem for $(\mathcal{A}, \mathcal{L}, \mathcal{C})$

- In the sequel, we will assume that for all $i=1,2, \ldots q$ the indices η_{i} exist.
- Define the following pattern matrix associated with $(\mathcal{A}, \mathcal{L}, \mathcal{C})$:

$$
\mathcal{R}:=\left[\begin{array}{llll}
\mathcal{C} \mathcal{A}^{\eta_{1}-1} \mathcal{L}_{1} & \mathcal{C} \mathcal{A}^{\eta_{2}-1} \mathcal{L}_{2} & \cdots & \mathcal{C} \mathcal{A}^{\eta_{q}-1} \mathcal{L}_{q} \tag{4}
\end{array}\right]
$$

Algebraic Conditions for Solvability of The FDI Problem for $(\mathcal{A}, \mathcal{L}, \mathcal{C})$

- In the sequel, we will assume that for all $i=1,2, \ldots q$ the indices η_{i} exist.
- Define the following pattern matrix associated with $(\mathcal{A}, \mathcal{L}, \mathcal{C})$:

$$
\mathcal{R}:=\left[\begin{array}{llll}
\mathcal{C} \mathcal{A}^{\eta_{1}-1} \mathcal{L}_{1} & \mathcal{C} \mathcal{A}^{\eta_{2}-1} \mathcal{L}_{2} & \cdots & \mathcal{C} \mathcal{A}^{\eta_{q}-1} \mathcal{L}_{q} \tag{4}
\end{array}\right]
$$

- We say that \mathcal{R} has full column rank if all the matrices in the pattern class $\mathcal{P}(\mathcal{R})$ have full column rank.

Algebraic Conditions for Solvability of The FDI Problem for $(\mathcal{A}, \mathcal{L}, \mathcal{C})$

- In the sequel, we will assume that for all $i=1,2, \ldots q$ the indices η_{i} exist.
- Define the following pattern matrix associated with $(\mathcal{A}, \mathcal{L}, \mathcal{C})$:

$$
\mathcal{R}:=\left[\begin{array}{llll}
\mathcal{C} \mathcal{A}^{\eta_{1}-1} \mathcal{L}_{1} & \mathcal{C} \mathcal{A}^{\eta_{2}-1} \mathcal{L}_{2} & \cdots & \mathcal{C} \mathcal{A}^{\eta_{q}-1} \mathcal{L}_{q} \tag{4}
\end{array}\right]
$$

- We say that \mathcal{R} has full column rank if all the matrices in the pattern class $\mathcal{P}(\mathcal{R})$ have full column rank.

Theorem 4

Consider the system $(\mathcal{A}, \mathcal{L}, \mathcal{C})$. Let \mathcal{R} be the pattern matrix given by (4). The FDI problem for $(\mathcal{A}, \mathcal{L}, \mathcal{C})$ is solvable if \mathcal{R} has full column rank.

An Example for Theorem 4

$$
\mathcal{A}=\left[\begin{array}{ccccc}
* & 0 & 0 & 0 & 0 \\
* & ? & 0 & ? & 0 \\
0 & * & * & ? & 0 \\
* & 0 & 0 & ? & * \\
0 & 0 & * & 0 & *
\end{array}\right], \quad \mathcal{L}=\left[\begin{array}{cc}
* & 0 \\
? & * \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right], \mathcal{C}=\left[\begin{array}{lllll}
0 & 0 & 0 & * & 0 \\
0 & 0 & 0 & ? & ? \\
0 & 0 & 0 & * & *
\end{array}\right] .
$$

An Example for Theorem 4

$$
\begin{gathered}
\mathcal{A}=\left[\begin{array}{lllll}
* & 0 & 0 & 0 & 0 \\
* & ? & 0 & ? & 0 \\
0 & * & * & ? & 0 \\
* & 0 & 0 & ? & * \\
0 & 0 & * & 0 & *
\end{array}\right], \quad \mathcal{L}=\left[\begin{array}{ll}
* & 0 \\
? & * \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right], \quad \mathcal{C}=\left[\begin{array}{lllll}
0 & 0 & 0 & * & 0 \\
0 & 0 & 0 & ? & ? \\
0 & 0 & 0 & * & *
\end{array}\right] . \\
{\left[\begin{array}{lll}
\mathcal{C} \mathcal{L}_{1} & \mathcal{C A} \mathcal{L}_{1}
\end{array}\right]=\left[\begin{array}{ll}
0 & * \\
0 & ? \\
0 & *
\end{array}\right],} \\
{\left[\begin{array}{lll}
\mathcal{C} \mathcal{L}_{2} & \mathcal{C A} \mathcal{L}_{2} & \mathcal{C A}^{2} \mathcal{L}_{2}
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & ? \\
0 & 0 & *
\end{array}\right]}
\end{gathered}
$$

An Example for Theorem 4

$$
\mathcal{A}=\left[\begin{array}{ccccc}
* & 0 & 0 & 0 & 0 \\
* & ? & 0 & ? & 0 \\
0 & * & * & ? & 0 \\
* & 0 & 0 & ? & * \\
0 & 0 & * & 0 & *
\end{array}\right], \quad \mathcal{L}=\left[\begin{array}{cc}
* & 0 \\
? & * \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right], \quad \mathcal{C}=\left[\begin{array}{lllll}
0 & 0 & 0 & * & 0 \\
0 & 0 & 0 & ? & ? \\
0 & 0 & 0 & * & *
\end{array}\right] .
$$

$$
\begin{aligned}
\mathcal{R} & =\left[\begin{array}{ll}
\mathcal{C} \mathcal{A} \mathcal{L}_{1} & \mathcal{C} \mathcal{A}^{2} \mathcal{L}_{2}
\end{array}\right] \\
& =\left[\begin{array}{ll}
* & 0 \\
? & ? \\
* & *
\end{array}\right]
\end{aligned}
$$

An Example for Theorem 4

$$
\begin{aligned}
\mathcal{A} & =\left[\begin{array}{lllll}
* & 0 & 0 & 0 & 0 \\
* & ? & 0 & ? & 0 \\
0 & * & * & ? & 0 \\
* & 0 & 0 & ? & * \\
0 & 0 & * & 0 & *
\end{array}\right], \quad \mathcal{L}=\left[\begin{array}{ll}
* & 0 \\
? & * \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right], \quad \mathcal{C}=\left[\begin{array}{lllll}
0 & 0 & 0 & * & 0 \\
0 & 0 & 0 & ? & ? \\
0 & 0 & 0 & * & *
\end{array}\right] . \\
\mathcal{R} & =\left[\begin{array}{lll}
\mathcal{C} \mathcal{A} \mathcal{L}_{1} & \mathcal{C} \mathcal{A}^{2} \mathcal{L}_{2}
\end{array}\right] . \\
& =\left[\begin{array}{ll}
* & 0 \\
? & ? \\
* & *
\end{array}\right] .
\end{aligned}
$$

An Example for Theorem 4

$$
\begin{gathered}
\mathcal{A}=\left[\begin{array}{ccccc}
* & 0 & 0 & 0 & 0 \\
* & ? & 0 & ? & 0 \\
0 & * & * & ? & 0 \\
* & 0 & 0 & ? & * \\
0 & 0 & * & 0 & *
\end{array}\right], \quad \mathcal{L}=\left[\begin{array}{ll}
* & 0 \\
? & * \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right], \mathcal{C}=\left[\begin{array}{lllll}
0 & 0 & 0 & * & 0 \\
0 & 0 & 0 & ? & ? \\
0 & 0 & 0 & * & *
\end{array}\right] \\
\mathcal{R}=\left[\begin{array}{ll}
\mathcal{C} \mathcal{A} \mathcal{L}_{1} & \mathcal{C} \mathcal{A}^{2} \mathcal{L}_{2}
\end{array}\right] \\
=\left[\begin{array}{cc}
* & 0 \\
? & ? \\
* & *
\end{array}\right] . \\
R=\left[\begin{array}{cc}
c_{1} & 0 \\
\lambda_{1} & \lambda_{2} \\
c_{2} & c_{3}
\end{array}\right] \in \mathcal{P}(\mathcal{R}) \\
\\
\begin{array}{l}
R \text { has full column rank for all } \\
\text { choices } c_{i} \text { and } \lambda_{j} .
\end{array}
\end{gathered}
$$

An Example for Theorem 4

$$
\begin{aligned}
& \mathcal{A}=\left[\begin{array}{ccccc}
* & 0 & 0 & 0 & 0 \\
* & ? & 0 & ? & 0 \\
0 & * & * & ? & 0 \\
* & 0 & 0 & ? & * \\
0 & 0 & * & 0 & *
\end{array}\right], \quad \mathcal{L}=\left[\begin{array}{ll}
* & 0 \\
? & * \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right], \quad \mathcal{C}=\left[\begin{array}{lllll}
0 & 0 & 0 & * & 0 \\
0 & 0 & 0 & ? & ? \\
0 & 0 & 0 & * & *
\end{array}\right] \\
& \mathcal{R}=\left[\begin{array}{lll}
\mathcal{C} \mathcal{A} \mathcal{L}_{1} & \mathcal{C} \mathcal{A}^{2} \mathcal{L}_{2}
\end{array}\right] \\
&=\left[\begin{array}{ll}
* & 0 \\
? & ? \\
* & *
\end{array}\right] . R=\left[\begin{array}{cc}
c_{1} & 0 \\
\lambda_{1} & \lambda_{2} \\
c_{2} & c_{3}
\end{array}\right] \in \mathcal{P}(\mathcal{R}) \\
& R \text { has full column rank for all } \\
& \text { choices } c_{i} \text { and } \lambda_{j} .
\end{aligned}
$$

Therefore, the FDI problem for $(\mathcal{A}, \mathcal{L}, \mathcal{C})$ is solvable.

Graph-theoretic Conditions for Solvability of The FDI Problem for $(\mathcal{A}, \mathcal{L}, \mathcal{C})$

(1) Introduction
(2) Problem Formulation
(3) Conditions for Solvability of The FDI Problem for (A, L, C)
(4) Algebraic Conditions for Solvability of The FDI Problem for $(\mathcal{A}, \mathcal{L}, \mathcal{C})$
(5) Graph-theoretic Conditions for Solvability of The FDI Problem for $(\mathcal{A}, \mathcal{L}, \mathcal{C})$
(6) Summary

Associated Graphs of Pattern Matrices

- Given a pattern matrix $\mathcal{M} \in\{0, *, ?\}^{p \times q}(p \leqslant q)$, we define the associated graph $G(\mathcal{M})=(V, E)$ as follows:
- Node set $V=\{1,2, \ldots, q\}$.
- Edge set $E=E_{*} \cup E_{\text {? }}$, where $E_{*}=\left\{(i, j) \in V \times V \mid \mathcal{M}_{j i}=*\right\}$ and $E_{?}=\left\{(i, j) \in V \times V \mid \mathcal{M}_{j i}=?\right\}$.

Associated Graphs of Pattern Matrices

- Given a pattern matrix $\mathcal{M} \in\{0, *, ?\}^{p \times q}(p \leqslant q)$, we define the associated graph $G(\mathcal{M})=(V, E)$ as follows:
- Node set $V=\{1,2, \ldots, q\}$.
- Edge set $E=E_{*} \cup E_{\text {? }}$, where $E_{*}=\left\{(i, j) \in V \times V \mid \mathcal{M}_{j i}=*\right\}$ and $E_{?}=\left\{(i, j) \in V \times V \mid \mathcal{M}_{j i}=?\right\}$.

$$
\mathcal{M}=\left[\begin{array}{lll}
* & ? & * \\
0 & ? & *
\end{array}\right]
$$

Figure: The graph $G(\mathcal{M})$.

Colorability of Graphs Associated with Pattern Matrices

- Consider a graph $G(\mathcal{M})$ with $\mathcal{M} \in\{0, *, ?\}^{p \times q}(p \leqslant q)$.

1. Initially, color all nodes of $G(\mathcal{M})$ white.
2. If a node $i \in V$ (of any color) has

- exactly one white out-neighbor j and
- $(i, j) \in E_{*}$,
we change the color of j to black.

3. Repeat the Step 2 until no more color changes are possible.

- The $G(\mathcal{M})$ is called colorable if all the nodes in $\{1,2, \ldots, p\}$ are colored black finally.

Colorability of Graphs Associated with Pattern Matrices

- Consider a graph $G(\mathcal{M})$ with $\mathcal{M} \in\{0, *, ?\}^{p \times q}(p \leqslant q)$.

1. Initially, color all nodes of $G(\mathcal{M})$ white.
2. If a node $i \in V$ (of any color) has

- exactly one white out-neighbor j and
- $(i, j) \in E_{*}$,
we change the color of j to black.

3. Repeat the Step 2 until no more color changes are possible.

- The $G(\mathcal{M})$ is called colorable if all the nodes in $\{1,2, \ldots, p\}$ are colored black finally.

$$
\mathcal{M}=\left[\begin{array}{lll}
* & ? & * \\
0 & ? & *
\end{array}\right]
$$

Colorability of Graphs Associated with Pattern Matrices

- Consider a graph $G(\mathcal{M})$ with $\mathcal{M} \in\{0, *, ?\}^{p \times q}(p \leqslant q)$.

1. Initially, color all nodes of $G(\mathcal{M})$ white.
2. If a node $i \in V$ (of any color) has

- exactly one white out-neighbor j and
- $(i, j) \in E_{*}$,
we change the color of j to black.

3. Repeat the Step 2 until no more color changes are possible.

- The $G(\mathcal{M})$ is called colorable if all the nodes in $\{1,2, \ldots, p\}$ are colored black finally.

$$
\mathcal{M}=\left[\begin{array}{lll}
* & ? & * \\
0 & ? & *
\end{array}\right]
$$

Colorability of Graphs Associated with Pattern Matrices

- Consider a graph $G(\mathcal{M})$ with $\mathcal{M} \in\{0, *, ?\}^{p \times q}(p \leqslant q)$.

1. Initially, color all nodes of $G(\mathcal{M})$ white.
2. If a node $i \in V$ (of any color) has

- exactly one white out-neighbor j and
- $(i, j) \in E_{*}$,
we change the color of j to black.

3. Repeat the Step 2 until no more color changes are possible.

- The $G(\mathcal{M})$ is called colorable if all the nodes in $\{1,2, \ldots, p\}$ are colored black finally.

$$
\mathcal{M}=\left[\begin{array}{lll}
* & ? & * \\
0 & ? & *
\end{array}\right]
$$

A Graph-theoretic Condition for Solvability of The FDI Problem

Define the transpose of \mathcal{R} as the pattern matrix $\mathcal{R}^{\top} \in\{0, *, ?\}^{s \times r}$ with $\left(\mathcal{R}^{\top}\right)_{i j}=\mathcal{R}_{j i}$ for $i=1,2, \ldots, s$ and $j=1,2, \ldots, r$.

A Graph-theoretic Condition for Solvability of The FDI Problem

Define the transpose of \mathcal{R} as the pattern matrix $\mathcal{R}^{\top} \in\{0, *, ?\}^{s \times r}$ with $\left(\mathcal{R}^{\top}\right)_{i j}=\mathcal{R}_{j i}$ for $i=1,2, \ldots, s$ and $j=1,2, \ldots, r$.

Theorem 5

Consider the system $(\mathcal{A}, \mathcal{L}, \mathcal{C})$. Suppose that the indices η_{i} exists for $i=1,2, \ldots, q$. Let \mathcal{R} be the pattern matrix given by (4). Then, the FDI problem for $(\mathcal{A}, \mathcal{L}, \mathcal{C})$ is solvable if $G\left(\mathcal{R}^{\top}\right)$ is colorable.

An Example for Theorem 5

$$
\mathcal{A}=\left[\begin{array}{ccccc}
* & 0 & 0 & 0 & 0 \\
* & ? & 0 & ? & 0 \\
0 & * & * & ? & 0 \\
* & 0 & 0 & ? & * \\
0 & 0 & * & 0 & *
\end{array}\right], \quad \mathcal{L}=\left[\begin{array}{cc}
* & 0 \\
? & * \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right], \quad \mathcal{C}=\left[\begin{array}{lllll}
0 & 0 & 0 & * & 0 \\
0 & 0 & 0 & ? & ? \\
0 & 0 & 0 & * & *
\end{array}\right] .
$$

An Example for Theorem 5

$$
\begin{gathered}
\mathcal{A}=\left[\begin{array}{lllll}
* & 0 & 0 & 0 & 0 \\
* & ? & 0 & ? & 0 \\
0 & * & * & ? & 0 \\
* & 0 & 0 & ? & * \\
0 & 0 & * & 0 & *
\end{array}\right], \quad \mathcal{L}=\left[\begin{array}{ll}
* & 0 \\
? & * \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right], \quad \mathcal{C}=\left[\begin{array}{lllll}
0 & 0 & 0 & * & 0 \\
0 & 0 & 0 & ? & ? \\
0 & 0 & 0 & * & *
\end{array}\right] . \\
\mathcal{R}^{\top}=\left[\begin{array}{lll}
* & ? & * \\
0 & ? & *
\end{array}\right] .
\end{gathered}
$$

An Example for Theorem 5

$$
\begin{aligned}
& \mathcal{A}=\left[\begin{array}{lllll}
* & 0 & 0 & 0 & 0 \\
* & ? & 0 & ? & 0 \\
0 & * & * & ? & 0 \\
* & 0 & 0 & ? & * \\
0 & 0 & * & 0 & *
\end{array}\right], \quad \mathcal{L}=\left[\begin{array}{ll}
* & 0 \\
? & * \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right], \quad \mathcal{C}=\left[\begin{array}{lllll}
0 & 0 & 0 & * & 0 \\
0 & 0 & 0 & ? & ? \\
0 & 0 & 0 & * & *
\end{array}\right] . \\
& \top^{\top}=\left[\begin{array}{lll}
* & ? & * \\
0 & ? & *
\end{array}\right] .
\end{aligned}
$$

Figure: The graph $G\left(\mathcal{R}^{\top}\right)$ is colorable.

An Example for Theorem 5

$$
\begin{gathered}
\mathcal{A}=\left[\begin{array}{lllll}
* & 0 & 0 & 0 & 0 \\
* & ? & 0 & ? & 0 \\
0 & * & * & ? & 0 \\
* & 0 & 0 & ? & * \\
0 & 0 & * & 0 & *
\end{array}\right], \quad \mathcal{L}=\left[\begin{array}{ll}
* & 0 \\
? & * \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right], \mathcal{C}=\left[\begin{array}{lllll}
0 & 0 & 0 & * & 0 \\
0 & 0 & 0 & ? \\
0 & 0 & 0 & ? & ?
\end{array}\right] . \\
\mathcal{R}^{\top}=\left[\begin{array}{lll}
* & ? & * \\
0 & ? & *
\end{array}\right] .
\end{gathered}
$$

Figure: The graph $G\left(\mathcal{R}^{\top}\right)$ is colorable.
The FDI problem for $(\mathcal{A}, \mathcal{L}, \mathcal{C})$ is solvable.

Summary

- Formalize the solvability of the FDI problem for linear structured systems.

Summary

- Formalize the solvability of the FDI problem for linear structured systems.
- Establish a necessary and sufficient condition for solvability of the FDI problem for a given particular LTI system.

Summary

- Formalize the solvability of the FDI problem for linear structured systems.
- Establish a necessary and sufficient condition for solvability of the FDI problem for a given particular LTI system.
- Establish a sufficient condition for solvability of the FDI problem in terms of a rank test on a pattern matrix associated with the structured system.

Summary

- Formalize the solvability of the FDI problem for linear structured systems.
- Establish a necessary and sufficient condition for solvability of the FDI problem for a given particular LTI system.
- Establish a sufficient condition for solvability of the FDI problem in terms of a rank test on a pattern matrix associated with the structured system.
- Establish a graph-theoretic condition for solvability of the FDI problem using the concept of colorability of a graph.

For Further Reading I

Q J. Jia, H. L. Trentelman and M. K. Camlibel (2020).
Fault Detection and Isolation for Linear Structured Systems.
https://arxiv.org/abs/2003.01502

Thank You for Your Attention! The End

[^0]: ${ }^{2}$ J. Jia, H. J. van Waarde, H. L. Trentelman, M. K. Camlibel (2020), 'A Unifying Framework for Strong Structural Controllability'.

[^1]: ${ }^{3}$ C. Commault, J.M. Dion, O. Sename and R. Motyeian (2000), 'Fault Detection and Isolation of Structured Systems.'

[^2]: ${ }^{4}$ P. Rapisarda, A. R. F. Everts and M. K. Camlibel (2015), 'Fault Detection and Isolation for Systems Defined over Graphs.'

[^3]: ${ }^{5}$ B. Shali (2019), 'Strong Structural Properties of Structured Linear Systems.'

