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Controllability of Linear Systems

For linear systems of the form

ẋ = Ax + Bu,

controllability can be verified by Kalman rank test or the Hautus test.

In many scenarios, the exact values of entries in A and B are not
known, but some patterns of A and B are known exactly.
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Pattern matrices and Pattern Classes

Given a pattern matrix M∈ {0, ∗, ?}p×q, we define the pattern class
of M as

P(M) := {M ∈ Rp×q |Mij = 0 if Mij = 0,

Mij 6= 0 if Mij = ∗.}

Remark: Mij can be any real value, if Mij = ?.

M =
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0 0 ∗
? ∗ ∗
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 /∈ P(M)

 0 0 2
0 0 2
0 1 3

 /∈ P(M)
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Strong Structural Controllability of (A,B)

Let A ∈ {0, ∗, ?}n×n and B ∈ {0, ∗, ?}n×m be pattern matrices.

If for every A ∈ P(A) and B ∈ P(B) the linear dynamical system

ẋ(t) = Ax(t) + Bu(t), (1)

is controllable, we call (A,B) is strongly structurally controllable
(or controllable for short).

Problem arises: How can we check the controllability of (A,B)?
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Brief review of existing research

A ∈ {0, ∗}n×n and B ∈ {0, ∗}n×m:

Mayeda et. al. (1979), ”Strong Structural Controllability.”

Reinschke et. al. (1992), ”On strong structural controllability of linear systems.”

Jarczyk et. al. (2011), ”Strong structural controllability of linear systems revisited.”

Chapman et. al. (2013), ”On strong structural controllability of networked systems:

A constrained matching approach.”

Trefois et. al. (2015), ”Zero forcing number, constrained matchings and strong

structural controllability.”

A ∈ {0, ∗, ?}n×n and B ∈ {0, ∗}n×m:

Monshizadeh et. al. (2014), ”Zero Forcing Sets and Controllability of Dynamical

Systems Defined on Graphs.”
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Problem formulation

For general A ∈ {0, ∗, ?}n×n and B ∈ {0, ∗, ?}n×m, the conditions for
controllability of (A,B) are still absent.

Problem statement:
Let A ∈ {0, ∗, ?}n×n and B ∈ {0, ∗, ?}n×m be pattern matrices.
Can we provide conditions for controllability of (A,B) both in
algebraic and graph-theoretic terms ?
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Algebraic conditions for controllability of (A,B)

Definition 1
For a given pattern matrix M∈ {0, ∗, ?}p×q, we say M has full row
rank if the matrix M has full row rank for all M ∈ P(M).

Theorem 1
Let A ∈ {0, ∗, ?}n×n and B ∈ {0, ∗, ?}n×m be pattern matrices. Let
Ā ∈ {0, ∗, ?}n×n be the pattern matrix obtained from A by modifying the
diagonal entries of A as follows:

Āii :=

{
∗ if Aii = 0,

? otherwise.
(2)

The system (A,B) is controllable if and only if both pattern matrices[
A B

]
and

[
Ā B

]
have full row rank.
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Example for algebraic conditions
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L IL
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+ −
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GIC1

A =

∗ 0 ∗
0 0 ∗
? ∗ ∗

 , B =

∗ 0
0 ∗
? 0



[
A B

]
=

∗ 0 ∗ ∗ 0
0 0 ∗ 0 ∗
? ∗ ∗ ? 0



[
Ā B

]
=

? 0 ∗ ∗ 0
0 ∗ ∗ 0 ∗
? ∗ ? ? 0



Obviously, (A,B) is controllable.
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Associated graphs of pattern matrices

Given a pattern matrix M∈ {0, ∗, ?}p×q (p ≤ q), we define the
associated graph G (M) = (V ,E ) as follows:
Node set V = {1, 2, . . . , q}.
Edge set E = E∗ ∪ E? where E∗ = {(i , j) ∈ V × V | Mji = ∗} and
E? = {(i , j) ∈ V × V | Mji = ?}.

M =
[
A B

]
=

∗ 0 ∗ ∗ 0
0 0 ∗ 0 ∗
? ∗ ∗ ? 0


1

3

24 5

Figure: The graph G (M).
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Edge set E = E∗ ∪ E? where E∗ = {(i , j) ∈ V × V | Mji = ∗} and
E? = {(i , j) ∈ V × V | Mji = ?}.

M =
[
A B

]
=

∗ 0 ∗ ∗ 0
0 0 ∗ 0 ∗
? ∗ ∗ ? 0


1

3

24 5

Figure: The graph G (M).
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Colorability of graphs associated with pattern matrices

Consider a graph G (M) with M∈ {0, ∗, ?}p×q (p ≤ q).

1. Initially, color all nodes of G (M) white.
2. If a node i ∈ V (of any color) has

exactly one white out-neighbor j and
(i , j) ∈ E∗,

we change the color of j to black.
3. Repeat the Step 2 until no more color changes are possible.

The G (M) is called colorable if all the nodes in {1, 2, . . . , p} are
colored black finally.

M =
[
A B

]
=

∗ 0 ∗ ∗ 0
0 0 ∗ 0 ∗
? ∗ ∗ ? 0


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Graph theoretic conditions for controllability of (A,B)

Theorem 2
Let M∈ {0, ∗, ?}p×q with p ≤ q. The matrix M has full row rank if and
only if the associated graph G (M) is colorable.

Theorem 1
Let A ∈ {0, ∗, ?}n×n and B ∈ {0, ∗, ?}n×m be pattern matrices. Let Ā ∈
{0, ∗, ?}n×n be defined as (2). The system (A,B) is controllable if and only
if both pattern matrices

[
A B

]
and

[
Ā B

]
have full row rank.

Theorem 3
Let A ∈ {0, ∗, ?}n×n and B ∈ {0, ∗, ?}n×m be pattern matrices. Let
Ā ∈ {0, ∗, ?}n×n be defined as (2). The system (A,B) is controllable if
and only if both G (

[
A B

]
) and G (

[
Ā B

]
) are colorable.
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Ā B

]
) are colorable.

J. Jia ( Rug JBI ) A Unifying Framework for SSC February 20, 2020 15 / 20



Graph theoretic conditions for controllability of (A,B)

Theorem 2
Let M∈ {0, ∗, ?}p×q with p ≤ q. The matrix M has full row rank if and
only if the associated graph G (M) is colorable.

Theorem 1
Let A ∈ {0, ∗, ?}n×n and B ∈ {0, ∗, ?}n×m be pattern matrices. Let Ā ∈
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Example for graph theoretic conditions

Consider the electrical circuit:

[
A B

]
=

∗ 0 ∗ ∗ 0
0 0 ∗ 0 ∗
? ∗ ∗ ? 0



[
Ā B

]
=

? 0 ∗ ∗ 0
0 ∗ ∗ 0 ∗
? ∗ ? ? 0



1

3

24 5

G (
[
A B

]
)

Therefore, (A,B) is controllable.
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Summary

{0, ∗} ⇒ {0, ∗, ?}.

(A,B) is controllable ⇔
[
A B

]
and

[
Ā B

]
have full row rank.

M has full row rank ⇔ G (M) is colorable.

(A,B) is controllable ⇔ G (
[
A B

]
) and G (

[
Ā B

]
) are colorable.
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For Further Reading I

Jiajia Jia, Henk J. van Waarde, Harry L. Trentelman, M. Kanat Camlibel
A Unifying Framework for Strong Structural Controllability.
https://arxiv.org/abs/1903.03353.
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Thank you for your attention!
The End
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