Strong Structural Controllability of Systems on Colored Graphs

J. Jia, H. L. Trentelman, W. Baar, M. K. Camlibel
Johann Bernoulli Institute for Mathematics and Computer Science, University of Groningen, The Netherlands

Benelux Meeting on Systems and Control, 2018

Overview

(1) Introduction
(2) Problem formulation
(3) Main results
(4) Summary

Controllability of systems on graphs

- Consider a simple directed graph $\mathcal{G}=(V, E), V=\{1, \ldots, n\}$ and $E \subset V \times V$.
- Qualitative class associated with \mathcal{G} :

$$
\mathcal{Q}(\mathcal{G})=\left\{A \in \mathbb{C}^{n \times n} \mid \text { for } i \neq j: A_{j i} \neq 0 \Leftrightarrow(i, j) \in E\right\} .
$$

- The diagonal entries of $A \in \mathcal{Q}(\mathcal{G})$ do not depend on the structure of \mathcal{G}, and these are 'free elements' (0 or nonzero).
- Let $V_{L}=\left\{v_{1}, \ldots, v_{m}\right\} \subset V$ be the leader set. Associated input matrix $B=\left(e_{v_{1}}, \ldots, e_{v_{m}}\right)$.
- The leader/follower system defined on graph \mathcal{G} : $\dot{x}=A x+B u$, with $A \in \mathcal{Q}(\mathcal{G})$.
Definition: $\left(\mathcal{G}, V_{L}\right)$ is called controllable if (A, B) is controllable for all $A \in \mathcal{Q}(\mathcal{G})$.

Zero forcing set and controllability of $\left(\mathcal{G}, V_{L}\right)$

Theorem (Monshizadeh, Zhang and Camlibel [1])
Let \mathcal{G} be a simple directed graph and $V_{L} \subset V$. Then, $\left(\mathcal{G}, V_{L}\right)$ is controllable if and only if V_{L} is a zero forcing set.

Figure: Simple directed graph \mathcal{G}.

- If v is a black vertex in \mathcal{G} with exactly one white out-neighbor u, then we change the color of u to black, and write $v \rightarrow u$.

Zero forcing set and controllability of $\left(\mathcal{G}, V_{L}\right)$

Theorem (Monshizadeh, Zhang and Camlibel [1])
Let \mathcal{G} be a simple directed graph and $V_{L} \subset V$. Then, $\left(\mathcal{G}, V_{L}\right)$ is controllable if and only if V_{L} is a zero forcing set.

- If v is a black vertex in \mathcal{G} with exactly one white out-neighbor u, then we change the color of u to black, and write $v \rightarrow u$.
- The set $\{1\}$ is a zero forcing set for the graph \mathcal{G}.

Example

Figure: Graph \mathcal{G} with $V_{L}=\{1,2,3\}$

- V_{L} is not a zero forcing set, which implies that $\left(\mathcal{G}, V_{L}\right)$ is not controllable.
- The situation changes drastically if we impose weights to be equal, but still nonzero.

Example

Figure: Graph \mathcal{G} with $V_{L}=\{1,2,3\}$

- This graph turns out to be controllable, i.e., (A, B) is controllable for all A associated with this graph. This can be checked by the PBH test.
- Note that it becomes very complicated to use the PBH test if the graph is of large scale.

Motivation

- Physical: dependence of nonzero parameters
- Particular structure: symmetric, undirected or unweighted

(Picture from "Secure and Efficient Capability-Based Power Management in the Smart Grid")

Figure: Underlying graph with identical edge weights.

Problem formulation

- Colored simple directed graph $\mathcal{G}(\pi)=(V, E, \pi)$ associated with a simple directed graph $\mathcal{G}=(V, E)$ and an edge partition $\pi=\left\{E_{1}, E_{2}, \ldots, E_{k}\right\}$, where $E_{i} \cap E_{j}=\emptyset$ for $i \neq j$, and edges have the same color if and only if they are in the same cell.
- Colored qualitative class of $\mathcal{G}(\pi)=(V, E, \pi)$: a family of matrices associated with $\mathcal{G}(\pi)$:

$$
\begin{aligned}
\mathcal{Q}_{\pi}(\mathcal{G})= & \left\{A \in \mathcal{Q}(\mathcal{G}) \mid A_{j i}=A_{l k}\right. \\
& \text { if } \left.(i, j),(k, I) \in E_{r} \text { for some } r\right\} .
\end{aligned}
$$

- $\left(\mathcal{G}(\pi), V_{L}\right)$ is called controllable if (A, B) is controllable for all $A \in \mathcal{Q}_{\pi}(\mathcal{G})$.
- Aim: Establish graph theoretical tests for controllability of $\left(\mathcal{G}(\pi), V_{L}\right)$.

Overview

(1) Introduction
(2) Problem formulation
(3) Main results
(4) Summary

Bipartite graphs and Perfect matching

- A simple directed graph $\mathcal{G}=(V, E)$ is called bipartite if there exist two nonempty disjoint vertex sets X and Y such that $X \cup Y=V$ and $(i, j) \in E$ only if $i \in X$ and $j \in Y$, denoted by $G=(X, Y, E)$.
- A set of t edges $\mathcal{E} \subset E$ is called a t-matching in G, if no two edges in \mathcal{E} share a vertex.
- In the special case of $|X|=|Y|$, such a t-matching is called a perfect matching if $t=|X|$.

p_{2}

p_{3}

Bipartite graphs and Perfect matching

- A simple directed graph $\mathcal{G}=(V, E)$ is called bipartite if there exist two nonempty disjoint vertex sets X and Y such that $X \cup Y=V$ and $(i, j) \in E$ only if $i \in X$ and $j \in Y$, denoted by $G=(X, Y, E)$.
- A set of t edges $\mathcal{E} \subset E$ is called a t-matching in G, if no two edges in \mathcal{E} share a vertex.
- In the special case of $|X|=|Y|$, such a t-matching is called a perfect matching if $t=|X|$.
- The pattern class $\mathcal{P}(G)$ of this bipartite graph G is defined as

$$
\mathcal{P}(G)=\left\{M \in \mathbb{C}^{t \times s} \mid M_{j i} \neq 0 \Leftrightarrow\left(x_{i}, y_{j}\right) \in E\right\} .
$$

Colored bipartite graph and colored pattern class

- A colored bipartite graph $G(\pi)=(X, Y, E, \pi)$ is a bipartite graph with a partition of the edge set $\pi=\left\{E_{1}, E_{1}, \ldots, E_{t}\right\}$ with to each cell assigned a color.
- The pattern class of the colored bipartite graph $G(\pi)$ is defined by

$$
\begin{aligned}
& \mathcal{P}_{\pi}(G)=\left\{A \in \mathcal{P}(G) \mid A_{j i}=A_{l k}\right. \\
& \text { if } \left.\left(x_{i}, y_{j}\right),\left(x_{k}, y_{l}\right) \in E_{r} \text { for some } r\right\}
\end{aligned}
$$

- Aim: Suppose $|X|=|Y|$, find a condition to verify whether all $A \in \mathcal{P}_{\pi}(G)$ are nonsingular.
This condition is used to establish the graph-theoretic condition.

Equivalence classes of perfect matchings

Colored bipartite graph.

$p_{1}, \operatorname{sgn}\left(p_{1}\right)=1$

$p_{2}, \operatorname{sgn}\left(p_{2}\right)=-1$

$p_{3}, \operatorname{sgn}\left(p_{3}\right)=-1$

Equivalence classes $\mathbb{P}=\left\{\mathbb{P}_{1}, \mathbb{P}_{2}\right\}$, where $\mathbb{P}_{1}=\left\{p_{1}, p_{3}\right\}$ with $\operatorname{sgn}\left(\mathbb{P}_{1}\right)=0$, and $\mathbb{P}_{2}=\left\{p_{2}\right\}$ with $\operatorname{sgn}\left(\mathbb{P}_{2}\right)=-1$.

Lemma 1: Let $G(\pi)=(X, Y, E, \pi)$ be a colored bipartite graph and $|X|=|Y|$. Then, all $A \in \mathcal{P}_{\pi}(G)$ are nonsingular if and only if there exists exactly one equivalence class of perfect matchings having nonzero signature.

Colored color change rule and colored zero forcing set

Let $\mathcal{G}(\pi)=(V, E, \pi)$ be a colored simple graph, with each vertex colored either white or black. Let $C \subseteq V(G)$ be set of vertices initially colored black.

- Given $X \subset C$ and $Y=N_{V \backslash C}(X)$, assume $|X|=|Y|$. Note that the subgraph $G\left(X, Y, E_{X Y}, \pi\right)$ is a colored bipartite graph. If exactly one equivalence class of perfect matchings has nonzero signature in $G\left(X, Y, E_{X Y}, \pi\right)$. Then X forces Y to be black, and we write $X \stackrel{C}{\Rightarrow} Y$.
- The derived set $D_{c}(C)$ is the set of black vertices obtained by applying this color change rule until no more changes are possible. If $D_{c}(C)=V, C$ is called a colored zero forcing set.

Example for colored zero forcing set

Theorem 2

Consider a colored simple directed graph $\mathcal{G}(\pi)=(V, E, \pi)$, with leader set $V_{L} \subset V$. Assume V_{L} is a colored zero forcing set. Then $\left(\mathcal{G}(\pi), V_{L}\right)$ is controllable.

$$
\mathcal{G}(\pi)=(V, E, \pi)
$$

$$
G(\pi)=\left(X, Y, E_{X Y}, \pi\right)
$$

Note the colored bipartite graph $G(\pi)$ is same as the one in previous example.

Colored color change rule: $\{1,2,3\} \stackrel{C}{\Rightarrow}\{4,5,6\}$.
$V_{L}=\{1,2,3\}$ is a colored zero forcing set.
$\left(\mathcal{G}(\pi), V_{L}\right)$ is controllable by Theorem 2.

Main results

Lemma 1 Let $G(\pi)=(X, Y, E, \pi)$ be a colored bipartite graph and $|X|=|Y|$. Then, all $A \in \mathcal{P}_{\pi}(G)$ are nonsingular if and only if there exists exactly one equivalence class of perfect matchings having nonzero signature.

Theorem 2

Consider a colored simple directed graph $\mathcal{G}(\pi)=(V, E, \pi)$, with leader set $V_{L} \subset V$. Assume V_{L} is a colored zero forcing set. Then $\left(\mathcal{G}(\pi), V_{L}\right)$ is controllable.

Corollary 3

Consider a system defined on a colored simple directed graph $\mathcal{G}(\pi)=(V, E, \pi)$ with $|\pi|=|E|$ with leader set $V_{L} \subset V$. Then $\left(\mathcal{G}, V_{L}\right)$ is controllable if and only if V_{L} is a colored zero forcing set.

Note: In the special case $|\pi|=|E|$, our condition is equivalent to that in terms of zero forcing set.

Summary

- Extension to systems defined on graphs with identical edge weights, which is a other kind of dependencies between the nonzero parameters.
- Establish a graph theoretic test for controllability of system on colored graph in terms of colored zero forcing set.

For Further Reading I

N. Monshizadeh, S. Zhang, and M. K. Camlibel (2014).

Zero Forcing Sets and Controllability of Dynamical Systems Defined on Graphs.
© Shima Sadat Mousaviy, Mohammad Haeriy, and Mehran Mesbahi (2017).

On the Structural and Strong Structural Controllability of Undirected Networks.
© F. Liu, A. S. Morse (2017).
Structural Controllability of Linear Time-invariant Systems.

Thank you for your attention! The End

