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Controllability of systems on graphs

Consider a simple directed graph G = (V ,E ), V = {1, . . . , n} and
E ⊂ V × V .

Qualitative class associated with G:

Q(G) = {A ∈ Cn×n | for i 6= j : Aji 6= 0⇔ (i , j) ∈ E}.

The diagonal entries of A ∈ Q(G) do not depend on the structure of
G, and these are ‘free elements’ (0 or nonzero).

Let VL = {v1, . . . , vm} ⊂ V be the leader set. Associated input
matrix B = (ev1 , . . . , evm).

The leader/follower system defined on graph G : ẋ = Ax + Bu, with
A ∈ Q(G).

Definition: (G,VL) is called controllable if (A,B) is controllable for all
A ∈ Q(G).
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Zero forcing set and controllability of (G,VL)

Theorem (Monshizadeh, Zhang and Camlibel [1])
Let G be a simple directed graph and VL ⊂ V . Then, (G,VL) is
controllable if and only if VL is a zero forcing set.
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Figure: Simple
directed graph G.

If v is a black vertex in G with exactly one
white out-neighbor u, then we change the
color of u to black, and write v → u.
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Zero forcing set and controllability of (G,VL)

Theorem (Monshizadeh, Zhang and Camlibel [1])
Let G be a simple directed graph and VL ⊂ V . Then, (G,VL) is
controllable if and only if VL is a zero forcing set.
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If v is a black vertex in G with exactly one
white out-neighbor u, then we change the
color of u to black, and write v → u.

The set {1} is a zero forcing set for the
graph G.
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Example
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Figure: Graph G with VL = {1, 2, 3}

VL is not a zero forcing set, which implies that (G,VL) is not
controllable.

The situation changes drastically if we impose weights to be equal,
but still nonzero.
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Example

1

2 3

4 5 6

c1

c2

c1

c2 c3 c3

Figure: Graph G with VL = {1, 2, 3}

This graph turns out to be controllable, i.e., (A,B) is controllable for
all A associated with this graph. This can be checked by the PBH
test.

Note that it becomes very complicated to use the PBH test if the
graph is of large scale.
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Motivation

Physical: dependence of nonzero parameters

Particular structure: symmetric, undirected or unweighted

(Picture from ”Secure and Efficient Capability-Based

Power Management in the Smart Grid”)
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Figure: Underlying graph with
identical edge weights.
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Problem formulation

Colored simple directed graph G(π) = (V ,E , π) associated with a
simple directed graph G = (V ,E ) and an edge partition
π = {E1,E2, . . . ,Ek}, where Ei ∩ Ej = ∅ for i 6= j , and edges have the
same color if and only if they are in the same cell.

Colored qualitative class of G(π) = (V ,E , π): a family of matrices
associated with G(π):

Qπ(G) ={A ∈ Q(G) | Aji = Alk

if (i , j), (k , l) ∈ Er for some r}.

(G(π),VL) is called controllable if (A,B) is controllable for all
A ∈ Qπ(G).

Aim: Establish graph theoretical tests for controllability of
(G(π),VL).
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Bipartite graphs and Perfect matching

A simple directed graph G = (V ,E ) is called bipartite if there exist
two nonempty disjoint vertex sets X and Y such that X ∪Y = V and
(i , j) ∈ E only if i ∈ X and j ∈ Y , denoted by G = (X ,Y ,E ).

A set of t edges E ⊂ E is called a t-matching in G , if no two edges
in E share a vertex.

In the special case of |X | = |Y |, such a t-matching is called a perfect
matching if t = |X |.
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Bipartite graphs and Perfect matching

A simple directed graph G = (V ,E ) is called bipartite if there exist
two nonempty disjoint vertex sets X and Y such that X ∪Y = V and
(i , j) ∈ E only if i ∈ X and j ∈ Y , denoted by G = (X ,Y ,E ).

A set of t edges E ⊂ E is called a t-matching in G , if no two edges
in E share a vertex.

In the special case of |X | = |Y |, such a t-matching is called a perfect
matching if t = |X |.
The pattern class P(G ) of this bipartite graph G is defined as

P(G ) = {M ∈ Ct×s |Mji 6= 0⇔ (xi , yj) ∈ E}.
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Colored bipartite graph and colored pattern class

A colored bipartite graph G (π) = (X ,Y ,E , π) is a bipartite graph
with a partition of the edge set π = {E1,E1, . . . ,Et} with to each cell
assigned a color.

The pattern class of the colored bipartite graph G (π) is defined by

Pπ(G ) = {A ∈ P(G )|Aji = Alk

if (xi , yj), (xk , yl) ∈ Er for some r}.

Aim: Suppose |X | = |Y | , find a condition to verify whether all
A ∈ Pπ(G ) are nonsingular.
This condition is used to establish the graph-theoretic condition.
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Equivalence classes of perfect matchings

1

2

3

4

5

6

X Y

Colored bipartite
graph.

1

2

3

4

5

6

X Y

p1, sgn(p1) = 1

1

2

3

4

5

6

X Y

p2, sgn(p2) = −1

1

2

3

4

5

6

X Y

p3, sgn(p3) = −1

Equivalence classes P = {P1,P2}, where P1 = {p1, p3} with sgn(P1) = 0,
and P2 = {p2} with sgn(P2) = −1.

Lemma 1: Let G (π) = (X ,Y ,E , π) be a colored bipartite graph and
|X | = |Y |. Then, all A ∈ Pπ(G ) are nonsingular if and only if there exists
exactly one equivalence class of perfect matchings having nonzero
signature.
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Colored color change rule and colored zero forcing set

Let G(π) = (V ,E , π) be a colored simple graph, with each vertex colored
either white or black. Let C ⊆ V (G ) be set of vertices initially colored
black.

Given X ⊂ C and Y = NV \C (X ), assume |X | = |Y |. Note that the
subgraph G (X ,Y ,EXY , π) is a colored bipartite graph. If exactly
one equivalence class of perfect matchings has nonzero
signature in G (X ,Y ,EXY , π). Then X forces Y to be black, and we

write X
C

=⇒ Y .

The derived set Dc(C ) is the set of black vertices obtained by
applying this color change rule until no more changes are possible. If
Dc(C ) = V , C is called a colored zero forcing set.
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Example for colored zero forcing set

Theorem 2
Consider a colored simple directed graph G(π) = (V ,E , π), with leader set
VL ⊂ V . Assume VL is a colored zero forcing set. Then (G(π),VL) is
controllable.
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G (π) = (X ,Y ,EXY , π)

Note the colored bipartite
graph G (π) is same as the one
in previous example.

Colored color change rule:

{1, 2, 3} C
=⇒ {4, 5, 6}.

VL = {1, 2, 3} is a colored zero
forcing set.

(G(π),VL) is controllable by
Theorem 2.
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Main results

Lemma 1 Let G (π) = (X ,Y ,E , π) be a colored bipartite graph and
|X | = |Y |. Then, all A ∈ Pπ(G ) are nonsingular if and only if there exists
exactly one equivalence class of perfect matchings having nonzero
signature.

Theorem 2
Consider a colored simple directed graph G(π) = (V ,E , π), with leader set
VL ⊂ V . Assume VL is a colored zero forcing set. Then (G(π),VL) is
controllable.

Corollary 3
Consider a system defined on a colored simple directed graph
G(π) = (V ,E , π) with |π| = |E | with leader set VL ⊂ V . Then (G,VL) is
controllable if and only if VL is a colored zero forcing set.

Note: In the special case |π| = |E | , our condition is equivalent to that in
terms of zero forcing set.
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Summary

Extension to systems defined on graphs with identical edge weights,
which is a other kind of dependencies between the nonzero
parameters.

Establish a graph theoretic test for controllability of system on colored
graph in terms of colored zero forcing set.
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Thank you for your attention!
The End
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